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DEGENERATE ORDERED BELL NUMBERS AND
POLYNOMIALS

TAEKYUN KIM

ABSTRACT. In this paper, we study degenerate ordered Bell numbers and
polynomials. In addition, we give some identities of these numbers and
polynomials which are derived from the generating function.

1. Introduction

For w(# 1) € C, Apostol-Bernoulli polynomials are defined by the generating
function to be

n

t o ow w— ot
wet — 16 - T;)Bn,w(‘l»)my (See [4,9, 12]) (]_1)

When 2 = 0, By, w = Bj,,(0) are called Apostol-Bernoulli numbers. Note that
BO,w =0.

In [1,5,6], L. Carlitz considered degenerate Bernoulli polynomials which are
given by the generating function to be

t
(1+A)V/r -1

oo
P t"
1+ M) = r)—, (AeR). .
L+ X0F =3 fus@)r, (AEB) (12)
Note that limy_,o Bpx(x) = Bp(x), (n > 0), where B,,(z) are the ordinary
Bernoulli polynomials.
Now, we consider degenerate Apostol-Bernoulli polynomials which are defined

by the generating function to be

t
w(l4+ M)A -1

t7L
n!’

oo
LT+ M5 =" Boaw(®) (1.3)
n=0
When o = 0, Bnaw = Bnaw(0) are called the degenerate Apostol-Bernoulli

numbers. Note that limy_,o 8y z,w(2) = Byw(x), (n > 0).
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As is known, ordered Bell numbers are given by the generating function to be

oo

1 t"
m —nz:(]bnm, (See [27378]). (1.4)
Thus, by (1.4), we get
b, = Z m!Sa(n,m), (n>0), (see[2,3,8]), (1.5)
m=0

where Sa(n, m) is the stirling number of the second kind.
The ordered Bell polynomials are defined by the generating function to be

n

ﬁe” => b'n,(w)%7 (see [8]). (1.6)
n=0 °

From (1.4) and (1.6), we have

bo(z) = f: <’;> bz, (n > 0). (1.7)

=0

Thus by (1.7), we see that b, (z) are Appell sequences for (2 — e, t).

In this paper, we consider the degenerate ordered Bell numbers and polyno-
mials which are given by the generating functions. In addition, we derive some
explicit identities of those numbers and polynomials which are derived from the
generating functions.

2. Degenerate ordered Bell numbers and polynomials

For A\ € R, we consider the degenerate ordered Bell polynomials which are
given by the generating function to be

1 x . © tn
T AT = 2 b (2.1)

When z = 0, by » = b,,1(0) are called the degenerate ordered Bell numbers. It
is not difficult to show that limy_,o b, x = b, (), (n > 0). From (2.1), we note
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that
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m=0

0
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where (2|\), = z(z—A)(z—2\) -+ (x—(n—1)N), (n > 1), (z|\)g = 1. Therefore,
by (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. Forn >0, we have

n

boe) = 3 (7 )bt
)

3

l

o

Z( ( |/\ 1br_ix
where (x|XN)g =1, (| \)n =2(z — XN)(x —2X) -+ (z — (n — 1)N), (n > 1).

Now, we observe that
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Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 2.2. For k > 0, we have

k m

b\ = Z Zn!Sg(m,n)Sl(k’,m)/\k_””.

m=0n=0

Note that

k
im by =y nlSa2(k,n
llgh bk x Z n!Sa(k,n)

n=0

=bp, (n>0).

By (2.4), we easily get
oo tl N
1= meﬁ (2 .yl +>\t)x>
1=0

o tl o tm

- < bl,Aﬁ) <2 - Z(lp‘)mW)
=0 m=0
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n=0 n=0 \[=0
oo n n t7L
= 20p.2 — 1UA)n_ib —.

By comparing the coeflicients on the both sides of (2.5), we get
" /n 1, ifn=0
2by \ — Aty =< " ’
b2 ; (l)( A n—ibrn {0, if n > 0.
Therefore, by (2.6), we obtain the following theorem.
Theorem 2.3. Forn > 0, we have
n—1 n
bor=1, byr= ; <l) (LA n—1bi,xs

where (1), =1-(1=XA)(1=2X)---(1 = (n—=1)A), (n>1), (1|]\)o = 1.



Degenerate ordered Bell numbers and polynomials

Example

bix=0box=1,
1

2
ba\ = Z (l) (LN)2—ibix = (1|N)2bo x + 2(1|X)1b1,A

=0
—(1-AN+2=3 A
> /3
b\ = Z (l> (L N)3—iby,x
=0

= (1|A)3box + <?> (1|A)2b1x + @) (1|A)1b2.x
= (1= N)(1-2)0)+301 -\ +3(3- )
=1

—B3A+F2X7 +3-3X+9-3\=13 -9\ +2)\7, ...

From (2.1), we note that

2 © 1
I S VAL L
R T v S A s vaTYe

z41
X

(14 Xt)

:Wu Fa0%F (2 (14 20V = (14 208

[e's) x (o) m

— A n _ .

=2 ()* =2 (@A),
n=0

n=0

and

x 1 x+1
ey T V) | . — YRV
2—(1+At)1/*( A2 2—(1+At)1/*( )

> t"L
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n=0

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.4. For n > 0, we have

(-'L'|)\)n = an)\(m) - b'n,)\(x + 1)'

(2.7)
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From (1.3), we have

ad tn 1 .
Z b -A(~2) = gy ESUREE (1—Xt)*

1

1 —t a1
:_?2(17)\15)1/*7 (1=26)>
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n=0
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(2.9)

Therefore, by (2.9), we obtain the following theorem.
Theorem 2.5. Forn > 0, we have

Br+ir2(x+1)
n+1 ’

b, -A(=2) = (=1)"

Let » € N. Then we define the degenerate ordered Bell numbers which are
given by the generating function to be

() = (s )0 0% = e

n=0
r—times

(2.10)
When z = 0, bf: )/\ bf: )A( 0) are called degenerate ordered Bell numbers. From

(2.10), we have
b (@) =3 < )b(” Nt (0> 0), (2.11)

1=0
and
n

b=y <l1 l)bzlixbzz,x'“bn,» (2.12)

Lyt tlp=n
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As is well know, Frobenius-Euler polynomials of order r are defined by the
generating function to be

1—u\" , [(1-u 1-u )
(6t7u> ¢ _<et7u>x X( ) ZH n! (2.13)

n=0

r—times

Thus, by (2.13), we get

1 " 2 1 " = Jog(14AL)
<2 —(1+ /\t)l/)‘> L+ A = <2 —ex log(1+At)> e

- Z ) x|2)—>\ " (log(1 + At))

m=0
. )\ntn (214)
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m=0 n=m
= i i A H D (£]2) 81 (n, m) =
N m o n!’
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Therefore, by (2.10) and (2.14), we obtain the following theorem.

Theorem 2.6. Forn > 0, we have

(r) Z AT mH(r ‘2)51(7I m)

Remark. For r € N, we have

Mg

n
260 () — b7 (& +1)} =
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-
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Thus, we note that

3
Il

20 (@) — b\ (@ + 1) = bV (@), (n > 0).
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